Modular CSS, JavaScript,
and WordPress

Josh Williams
http://tucsonlabs.com
1M/7/2012

Thursday, November 8, 12
Hi I’'m Josh. | run tucsonlabs.com and we make awesome, WordPress powered websites.

http://tucsonlabs.com
http://tucsonlabs.com

W T e Sl

- .

After leaving the motor assembly line, every Pontiac motor is tested under its own power and
adjusted for perfect operation

modular development

Separate an application into smaller parts that can be developed
and deployed independently.

Image Credit: http://www.flickr.com/photos/autohistorian/7599294098/

Thursday, November 8, 12

The concept of modular development stems from traditional programing and the basic idea is
to separate an application into smaller parts. As our websites become more complex, it can
be advantageous to adopt a similar approach to managing our CSS and Javascript.

http://www.flickr.com/photos/autohistorian/7599294098/
http://www.flickr.com/photos/autohistorian/7599294098/

Advantages

e Smaller files

e casier to debug,
maintain, and scale

e developers can work
separately on different
parts of an application

Credit: http://www.flickr.com/photos/vegaseddie/5700609302/in/photostream/

Thursday, November 8, 12

Taking a modular approach to front-end development forces you into separating your CSS
and JavaScript into distinct parts and this is beneficial for many different reasons. No one

likes editing someone else's spaghetti code and there’s a better place for your styles than at
the end of a huge style sheet.

http://www.flickr.com/photos/vegaseddie/5700609302/in/photostream/
http://www.flickr.com/photos/vegaseddie/5700609302/in/photostream/

applying to your CSS workflow

e Organize and separate
your CSS files and call
them using @import

e Use a build tool (or a
preprocessor) to
concatenate your
@import declarations

N = e

N

]

N

"compass"
"base/functions"
"base/variables"
"base/reset"
"base/mixins"
"base/placeholders”
"base/helpers"
"base/conditionals"

"vendor/grid"

Thursday, November 8, 12

The first step to applying a modular approach to CSS is to separate your styles into their own
files and use @import to include them in your main stylesheet. You can use a build tool to
concatenate your files to improve performance, or use a CSS preprocess which will do this for

you.

set fall back variables

$bodyBackgound: #fff |default;

html { background: $bodyBackground }

Thursday, November 8, 12

| want some of my modules to be portable.. like stick into someone else’s project portable
and not break. If you want to take this approach (and you’re using SASS or LESS), you can
make your modules more portable by using fallbacks for variables so they still work if a
variable hasn’t already been defined.

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aenean commodo ligula eget
dolor.

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.
Aenean commodo ligula eget
dolor. Aenean massa. Cum
sociis natoque penatibus et
magnis dis parturient montes

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aenean

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aenean

‘ Leave a comment...

O0CSS

Combine these techniques with a modular approach.

Thursday, November 8, 12

| prefer to keep html as semantic as possible, and with the latest version of SASS 3.2, this is
actually pretty simple. Looking at an object oriented CSS example, we can see how to make
this object without adding non-semantic classes to our markup.

If you’re not familiar with OOCSS concepts, check them out: http://oocss.org/

class="story media">
class="photo" src="user-img.png" alt="">
class="media-body">
<>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
commodo ligula eget dolor. Aenean massa. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec quam felis, ultricies nec.

</p>

< class="external-story media">
< class="photo" src="img.png" alt="">
< class="media-body">

<>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
commodo ligula eget dolor. Aenean massa. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec quam felis, ultricies nec.
</p>
< class="comment media">

< class="photo" src="user-profile.png" alt="">

< class="media-body">

<[>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor. Aenean massa. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur

ridiculus mus. Donec quam felis, ultricies nec,
</p>

the markup

Thursday, November 8, 12

Looking at the mark up each media object, needs a containing div with a media class applied

to it. If we’re using standard CSS, we also need a class applied to the image (or video) and the
body text. The CSS would look like this...

|.media {
overflow: hidden;
margin-bottom: 1.5em;
}

.media .photo {
overflow: hidden;

float: left;
margin-right: 20px;
}
.media .media-body {
overflow: hidden;

}

the CSS

Thursday, November 8, 12

Pretty simple. Now we can apply those classes to our markup anywhere we need to display
this type of content. But there are draw backs...

non-semantic
markup

just because you can doesn’t
mean you should.

http://www.flickr.com/photos/izatrini/4495686498/sizes/z/in/photostream/

Thursday, November 8, 12

Taking this approach leads to a boatload of markup that doesn’t mean anything. At some
point as web developer, you need to make trade offs, get the job done, and add a non-

semantic class to the markup so that you’ll have more maintainable style sheets. However,
using tools like SASS or LESS, we have other options.

http://www.flickr.com/photos/izatrini/4495686498/sizes/z/in/photostream/
http://www.flickr.com/photos/izatrini/4495686498/sizes/z/in/photostream/

smedia {
overflow: hidden;
margin-bottom: $baseline;
> :first-child {
overflow: hidden;
float: left;
margin-right: $gutter;
max-width: 30%;
}
> :last-child {
overflow: hidden;
}
}

.story {
%smedia

font-size: 24px;
}
.comment {
Ssmedia
color: #999;
font-size: 16px;

}

SASS placeholders

keeps our markup clean, and still gives us maintainable CSS

Thursday, November 8, 12

Using placeholders, we can reduce our dependence on non-semantic markup. This example
would need a polyfil for browsers that don’t support first and last-child pseudo elements, but
| think the trade off is worth it.

.story, .comment, .media {
overflow: hidden;
margin-bottom: 1.4em;

}

.story > :first-child,

.comment > :first-child,

.media > :first-child {
overflow: hidden;
float: left;
margin-right: 1.875em;
max-width: 30%;

}

.story > :last-child,

.comment > :last-child,

.media > :last-child {
overflow: hidden;

}

.story {
font-size: 24px;

}

.comment {
background: #fbfbfb;
color: #999;
font-size: 16px;

}

Compiled CSS

Placeholders use CSS inheritance rather than duplicating properties

Thursday, November 8, 12

Looking at the CSS, we can see that SASS smartly uses CSS inheritance rather than just
duplicating CSS properties.

media() {
overflow: hidden;
margin-bottom: $baseline;
> :first-child {
overflow: hidden;
float: left;
margin-right: $gutter;
max-width: 30%;
}
> :last-child {
overflow: hidden;

}

)

.story {

media();
font-size: 24px;
}
.comment {
media();
background: #ftbfbfb;
color: #999;
font-size: 16px;

MiXins

uses just about the exact same amount of source code

Thursday, November 8, 12
We can do the same thing using mixins also, but the CSS it produces is slightly different.

.story {
overflow: hidden;
margin-bottom: 1.4em;
font-size: 24px;

}

.story > :first-child {
overflow: hidden;
float: left;
margin-right: 1.875
max-width: 30%;

}

.story > :last-child {
overflow: hidden;

}

.comment {
overflow: hidden;
margin-bottom: 1.4em;
background: #fbfbfb;
color: #999;
font-size: 16px;

}

.comment > :first-child {
overflow: hidden;
float: left;
margin-right: 1.875em;
max-width: 30%;

}

.comment > :last-child {
overflow: hidden;

}

Mixin Compiled CSS

Properties are duplicated for each selector

Thursday, November 8, 12

The trade off is the amount of generated CSS. Using a mixin, you’re going to get a lot more
code bloat as it applies each property in a mixin to the separate classes it’s applied too.

That’s not to say mixins don’t have a purpose, but | recommend using them when you

require a variable to be passed in to the properties. Think of them more as a tool
functionality tool.

Let’s look at some frameworks that take a modular approach.

Dropdowns Split button dropdowns

Button groups Building on the button group styles and markup, we can easily create a split button. Split buttons feature a standard action ¢
a dropdown toggle on the right with contextual links.

Button dropdowns >
Navs
Breadcrumbs <div class="btn-group”>
<button class="btn">Action</button>
Pagination

<button class="btn dropdown-toggle"” data-toggle="dropdown">

</button>

<ul class="dropdown-menu">

Labels and badges

lypography
Thumbnails
</div>
Alerts
Progress bars Sizes
Media object Utilize the extra button classes .btn-mini , .btn-small,or .btn-large for sizing.
f'.' SC

twitter bootstrap

The kitchen sink approach

Thursday, November 8, 12

Bootstrap, Foundation, 320 and Up. Look to these for examples, but bootstrap and
foundation in particular are fairly large frameworks, so if size is an issue, you might want to
build your own or just use bits and pieces.

*Twitter bootstrap is great, but the license isn’t quite right for WordPress themes

Foundation

Foundation 3

The most advanced responsive front-end framework in the world.

Download Foundation 3.2

zurb’s foundation

MIT license, which is more WP friendly

Thursday, November 8, 12

Like bootstrap, zurb is trying to do everything for everyone. You’ll probably only use 10% of
the code. It’s difficult to take one small piece of foundation and use it for you project. It’s
well structured though and worth looking at as a reference.

JavaScript

has always had a bad wrap, but everyone uses it. we can speed it up

http://www.flickr.com/photos/praziquantel/30950009/sizes/z/in/photostream/

Thursday, November 8, 12

JavaScript had a rocky start, but it’s proven itself as a very capable even though it has its
quirks.

http://www.flickr.com/photos/praziquantel/30950009/sizes/z/in/photostream/
http://www.flickr.com/photos/praziquantel/30950009/sizes/z/in/photostream/

ga.js 200 http://h 14 91KB 69ms

| GET - text/javas...
| modernizr.custom.m 200 - http://h 5.66KB 227ms
| ’ L GET ; applicatio... " S B l
| comment-reply.js 200 - http://h 1.13KB 177ms Blocking 136ms
| : CET , applicatio.. ‘ ~ , ;
| e ’ rarsci O1ims Sending Ims
| events.js 200 o http://h 1.10K8B 174ms Waiting 106ms
GET applicatio... | L o ‘
— W content/plugin K val ! Z.15KB 155mMm¢ Receiv ng 17ms
i scripts-ck.js 200 - http://h 7.49KB 279ms
t . R GET — applicatio.. - e - 262ms —17ms
| jquery.pjax.js 200 o http://h 3.42KB 171ms
l . R . GET) applicatio... "~ - i N
forms.css 200 http://h 13.72KB 275ms
1 . I GET - text/css S—— e e
jquery.js 200 o http://h 38.48KB 307ms
1 ' L ‘ GET - applicatio... | , e — .

scripts block other
assets from
downloading

Thursday, November 8, 12

One of the biggest downsides to JS is actually loading it in your website or application. It
blocks everything else on the page from downloading and needless to say, this isn’t good. In
an ideal world that would everything would download in parallel, but their are reasons why
this is difficult...

script loaders
to the rescue

http://www.flickr.com/photos/nerdsoncall/5759398793/sizes/z/in/photostream/

Thursday, November 8, 12

Contrary to popular belief, downloading several scripts in parallel is generally faster than

loading one gigantic concatenated script files. Not only that, many large files can’t be cached.
iPhone has a 25kb limit on cached resources. Script loaders can help load are js
asynchronously and allow other files to download.

http://www.flickr.com/photos/nerdsoncall/5759398793/sizes/z/in/photostream/
http://www.flickr.com/photos/nerdsoncall/5759398793/sizes/z/in/photostream/

Asynchronous Module
Definition

UTRF
chl R
< g 24
25 require(['jquery', 'carousel'], function($, carousel) {
_ 27 ('.hero-unit').carousel();
- 29 };

A JAVASCRIPT
MODULE LOADER

Thursday, November 8, 12

There are a few popular script loaders out there, but require.js is probably the most popular.
Basically it requires each script to be in it’s own separate file and loaded then is loaded

through require.js. This is great for larger applications as you clearly see what script has file
dependencies.

*Load scripts through js (not php, ruby, or html)
*Forces you to think modularly, which leads to more reusable code

THE ONLY SCRIPT IN YOUR <HEAD>

HE A A tiny script that speeds up, simplifies and modernizes v site
Load scripts like images. Use HTMLS5 and CSS3 safely. Target CSS for different screens, paths, states and browsers. Make it

the only script in your HEAD. A concise solution to universal issues.

High“g hts JavaScript loader

Load scripts in parallel but execute in order

head.js (" /path/to/jguery.js", "/google/analytics.js", "/js/site.js", function() {

head.)s

smaller, easier to use, you don’t need to write your scripts as modules

Thursday, November 8, 12

There’s also a script loader called labs.js, but it’s not under active development anymore
because the community has really gotten on board with AMD.

®

Stats About U

CI"78C|D|"7R A ~
5715121714116

A live look at activity across WordPress.com

WordPress and the
80/20 rule

Thursday, November 8, 12

So how does all this relate to WordPress? Well one crucial aspect of a better UX on the web is
having a fast loading website. About 80% the response time happens on the front-end, so
this is where we can gain the most performance benefits. WordPress has proven that it’s
platform can scale, just look at wp.com. As long as you’re not doing some silly database
queries from within your template files, focus on improving your front end architecture as
that’s where most of your performance gains will come from.

http://www.yuiblog.com/blog/2006/11/28/performance-research-part-1/

CREATE YOUR UNDERSCORES e vore
BASED THEME P—— %

Hi. I'm a starter theme called _s, or A just right amount of lean, well-commented, modern, HTML5 templates.

underscores. if vou like. I'm a theme

~ s theme

integrates well with a modular approach

Thursday, November 8, 12
Using a scalable theme like _s can really help you build a modular front-end for your website.

It’s great because it doesn’t make too many assumptions about what you want to build, or
how you should structure your front-end assets.

Thanks!

josh@tucsonlabs.com
@tucsonlabs

Thursday, November 8, 12

Thanks to spoke6 for hosting the event!

mailto:josh@tucsonlabs.com
mailto:josh@tucsonlabs.com

